

CADISHI

[image: _images/cadishi.png]

Introduction

The CADISHI package is designed to perform fast computations of histograms of
the (Euclidean) distances between objects. For example, these objects may be
atoms from molecular dynamics (MD) simulation datasets, or stars or galaxies
from astrophysical datasets. While CADISHI is written mostly in Python, it is
built upon high-performance kernels written in C++ and CUDA to exploit the CPU
and GPU resources of a compute node as best as possible.
The code is released as open source and available at
https://github.com/bio-phys/cadishi.

In the field of MD simulations, CADISHI is most useful in conjunction with the
Capriqorn package. The name CADISHI is simply an
abbreviation of calculation of distance histograms.

For more information, we refer to our publication:

K. Reuter, J. Koefinger; CADISHI: Fast parallel calculation of particle-pair
distance histograms on CPUs and GPUs;
Comp. Phys. Comm. (236), 274 (2019) [https://doi.org/10.1016/j.cpc.2018.10.018].

A preprint of the paper is available on
arXiv.org [https://arxiv.org/abs/1808.01478].

Requirements

CADISHI requires a Python 2.7 or Python 3.X installation including the NumPy,
SciPy, Cython, h5py, and PyYAML modules. We recommend to use the Anaconda Python
Distribution which provides all the necessary modules out of the box. CADISHI
was mostly developed using Anaconda Python 2 (>=4.0.0).
Moreover, to compile the high-performance kernels, recent GCC (>=4.9) and CUDA
(>=7.5, together with a compatible GCC) installations are required.
CADISHI was successfully tested on Linux and Mac machines.

Features

CADISHI features a two-level parallelization. On the top level, CADISHI
parallelizes over frames (i.e. snapshots of the ensemble of objects at certain
points in time) using the Python multiprocessing module. A single frame is
processed by a single worker process running a CPU or GPU kernel. Multiple
worker processes may run simultaneously on a shared-memory multi-core machine.
On the frame level, OpenMP threads are used by the CPU kernel, and CUDA threads
are used by the GPU kernel. Hence, it is possible to fully exploit the
resources of a shared-memory machine. E.g., on a dual-socket server with two
GPUs, CADISHI would use two CPU worker processes (one per multi-core chip) and
two GPU worker processes (one per GPU card).

CADISHI supports orthorhombic and triclinic periodic boxes, applying the minimum
image convention to the distances internally.

Computations can be performed in single (default) or double precision.
Optionally, the distances can be checked if they fit into the desired histogram
width. Given the combinatorial explosion resulting from these possibilities,
templated C++ code is used to generate machine code with a minimum amount of
branches at runtime. Recent compilers are known to generate well-vectorized
machine code from the distance calculation for the CPU. The GPU kernel benefits
strongly from the fast shared-memory atomic operations introduced with the
MAXWELL generation of NVIDIA GPUs.

Input data, distance histogram computation, output data

CADISHI reads input data from an HDF5 file that is specified in the
histograms.yaml parameter file. A typical file location is
./preprocessor_output/trajectory.h5 when CADISHI is used in concert with
the Capriqorn package from the same authors. In any case the HDF5 file must have
a certain internal structure as shown in the following example:

/1/coordinates/species_0
 species_1
 species_2
 ...
/2/coordinates/species_0
 species_1
 species_2
 ...
...

Frames are numbered starting with 1. The number is used as the label for the
uppermost HDF5 group. For each frame the particle coordinates are stored in the
sub-group ‘coordinates’. Coordinate sets are double precision HDF5 datasets of
size (n_i, 3) where n_i is the number of particles of species i. The coordinate
datasets use the name of the species as the label which e.g. can be the name of
the chemical element in the context of MD data.

To demonstrate how to feed data into CADISHI there is an example code
available at
doc/scripts/input_example.py.
Adapt that code to easily implement a reader for arbitrary custom data.

To convert data from a plethora of MD simulation data formats to CADISHI’s
HDF5 format, we provide the script md_to_cadishi.py which is installed
together with the main program cadishi. It uses the reader from the
MDAnalysis package which needs to be installed to be able to use the conversion
tool (but is not a requirement to run CADISHI).

For each frame read from the HDF5 file CADISHI computes the distance histograms
between the particles for all combinations of species. The top-level parallelization
of CADISHI is able to compute multiple frames simultaneously on all GPUs and CPUs
available on a node. Within a frame, the computation is highly parallelized using
threads.

Finally, CADISHI writes the histograms into HDF5 files according to the
following scheme:

/1/histograms/species_0,species_0
 species_0,species_1
 species_0,species_2
 species_1,species_1
 species_1,species_2
 species_2,species_2
 ...
...

The HDF5 histogram datasets are single-column vectors of 64 bit floats. The
numerical datatype was chosen to make averaging easier and more consistent.

To get an idea about all the options available please have a look at the example
parameter file that comes with CADISHI. It can be generated using the command
cadishi example [--expert].

To make life with HDF5 files easier we recommend to use a graphical HDF5
viewer such as HDFView. Note, however, that HDFView does not support the LZF
compression that comes with the Python HDF5 module “H5py” and is used by CADISHI
by default (LZF can be disabled via the parameter file)).

Moreover, to demonstrate how to access the HDF5 data written by CADISHI from
Python we provide the example program
doc/scripts/plot_hdf5_data.py.
It opens the HDF5 container, reads the last frame and plots a histogram using
matplotlib. As an input file, the CADISHI output from the test case can be taken.

Finally, CADISHI comes with a HDF5 unpack tool (cadishi unpack) and a HDF5
merge tool (cadishi merge). The latter tool can also be used to decompress
single HDF5 files quickly before viewing them with HDFView.

Parameters

CADISHI is highly configurable via its YAML parameter file (create a sample file
using cadishi example [--expert]). Below we pick the most important
parameters and provide some background explanation.

	histogram:dr: Defines the histogram bin width. The total number of bins is
determined in conjunction with the following parameter.

	histogram:r_max: Defines the histogram cutoff radius. Make sure that your
input data is compatible with the cutoff radius, i.e. the maximum distance
between all points must be smaller. In this context, the following settings
are important.

	cpu:check_input and gpu:check_input: Checks at runtime if any distance
computed is equal or smaller than the cutoff radius. If this is not the case, an
exception is raised that causes CADISHI to exit. If these parameters are set
to false, no checks are performed and outliers may write into non-allocated
memory. In order to achieve the highest possible performance, make absolutely
sure that your data fits into r_max and disable the checks.

	input:periodic_box: The default value is null, causing CADISHI to
automatically look for the presence of box information in the input data. A
box can as well be specified explicitly, or disabled by setting the value to
an empty list [].

To achieve optimum performance, the number of workers and threads must be
tuned to your system. For large frames (>O(100000) particles) it is reasonable
to use few workers and a large number of threads per worker, e.g. if you have a
16 core CPU you could run a single cpu worker process with 14 threads, while
keeping the 2 more cores busy with CADISHI’s reader and writer processes (you
always have these two processes). For small frames, use more workers and fewer
(down to one) threads. Running some experiments is useful to gain experience
with specific datasets. Note that CADISHI supports NUMA awareness, i.e.
processes can be pinned to CPUs. Calculations on large frames greatly benefit
from the GPU kernels. Enable one worker per GPU. We have seen a binning rate of
up to 495 billion particle-pairs per second on a single Volta GPU.

Installation

The package comes with a standard Python setup.py file. It is installed e.g. as
follows into the user’s homedirectory:

python setup.py install --user

In this case, setup.py copies the CADISHI files into the directory ~/.local.
Make sure that your PATH environment variable includes the directory
~/.local/bin. To enable a CUDA build the nvcc compiler wrapper must be
found via the PATH environment variable. Influential boolean environment variables
are CAD_DEBUG, CAD_OPENMP, CAD_CUDA, and CAD_SAFE_CUDA_FLAGS; if
set they override the keys listed in the options section of the file setup.cfg.

Usage

The CADISHI package provides a single main executable cadishi which supports
commands and options (similar to the well-known concept used by git).

To get a quick overview on the options of CADISHI issue the following command:

cadishi --help

To get started a parameter file controlling the distance histogram calculation
is required. A basic example is included with the package and can be created as
follows:

cadishi example [--expert]

By default, the parameter file’s name is histograms.yaml. Edit the parameter
file to your needs. In particular, the compute kernels pydh (CPU) and cudh
(GPU) can be configured. In the example parameter file, the input configuration
points to the default test case included with the CADISHI package. Adapt the
input configuration to your actual data. An example code on how to import data
into CADISHI is available at
doc/scripts/input_example.py.
As a second step the distance histogram calculation is run as follows:

cadishi histo

Source documentation

The documentation linked below is generated automatically from the docstrings
present in the CADISHI source code.

	CADISHI modules
	cadishi

	cadishi.base

	cadishi.io.ascii

	cadishi.io.dummy

	cadishi.io.hdf5

	cadishi.io.pickle

	cadishi.dict_util

	cadishi.dictfs

	cadishi.h5pickle

	cadishi.util

	cadishi.version

	CADISHI compute kernels
	cadishi.kernel

	cadishi.kernel.common

	cadishi.kernel.dist

	cadishi.kernel.pydh

	cadishi.kernel.cudh

	CADISHI executables
	cadishi.exe

	cadishi.exe.cli

	cadishi.exe.histograms

	cadishi.exe.unpack

License and Citation

CADISHI is released under the permissive MIT license. See the file
LICENSE.txt for details.

Copyright 2015-2019 Klaus Reuter (MPCDF), Juergen Koefinger (MPIBP)

In case you’re using CADISHI for your own academic or non-academic research, we
kindly request that you cite CADISHI in your publications and presentations. We
suggest the following citation as appropriate:

K. Reuter, J. Koefinger; CADISHI: Fast parallel calculation of particle-pair
distance histograms on CPUs and GPUs;
Comp. Phys. Comm. (236), 274 (2019) [https://doi.org/10.1016/j.cpc.2018.10.018].

Indices and tables

	Index

	Module Index

	Search Page

CADISHI modules

The following documentation was automatically generated from the docstrings
present in the source code files.

cadishi

cadishi.base

cadishi.io.ascii

cadishi.io.dummy

cadishi.io.hdf5

cadishi.io.pickle

cadishi.dict_util

cadishi.dictfs

cadishi.h5pickle

cadishi.util

cadishi.version

CADISHI compute kernels

The following documentation was automatically generated from the docstrings
present in the source code files.

cadishi.kernel

cadishi.kernel.common

cadishi.kernel.dist

cadishi.kernel.pydh

cadishi.kernel.cudh

CADISHI executables

The executables are accessible via the cadishi command.

The following documentation was automatically generated from the docstrings
present in the source code files.

cadishi.exe

cadishi.exe.cli

cadishi.exe.histograms

cadishi.exe.unpack

Index

 nav.xhtml

 Table of Contents

 		
 CADISHI

 		
 CADISHI modules

 		
 cadishi

 		
 cadishi.base

 		
 cadishi.io.ascii

 		
 cadishi.io.dummy

 		
 cadishi.io.hdf5

 		
 cadishi.io.pickle

 		
 cadishi.dict_util

 		
 cadishi.dictfs

 		
 cadishi.h5pickle

 		
 cadishi.util

 		
 cadishi.version

 		
 CADISHI compute kernels

 		
 cadishi.kernel

 		
 cadishi.kernel.common

 		
 cadishi.kernel.dist

 		
 cadishi.kernel.pydh

 		
 cadishi.kernel.cudh

 		
 CADISHI executables

 		
 cadishi.exe

 		
 cadishi.exe.cli

 		
 cadishi.exe.histograms

 		
 cadishi.exe.unpack

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/cadishi.png

_static/ajax-loader.gif

_static/comment-close.png

