
CADISHI Documentation
Release 1.1.4

Klaus Reuter, Juergen Koefinger

Sep 16, 2020

Contents

1 Introduction 3

2 Requirements 5

3 Features 7

4 Input data, distance histogram computation, output data 9

5 Parameters 11

6 Installation 13

7 Usage 15

8 Source documentation 17
8.1 CADISHI modules . 17
8.2 CADISHI compute kernels . 18
8.3 CADISHI executables . 18

9 License and Citation 21

10 Indices and tables 23

i

ii

CADISHI Documentation, Release 1.1.4

Contents 1

CADISHI Documentation, Release 1.1.4

2 Contents

CHAPTER 1

Introduction

The CADISHI package is designed to perform fast computations of histograms of the (Euclidean) distances between
objects. For example, these objects may be atoms from molecular dynamics (MD) simulation datasets, or stars or
galaxies from astrophysical datasets. While CADISHI is written mostly in Python, it is built upon high-performance
kernels written in C++ and CUDA to exploit the CPU and GPU resources of a compute node as best as possible. The
code is released as open source and available at https://github.com/bio-phys/cadishi.

In the field of MD simulations, CADISHI is most useful in conjunction with the Capriqorn package. The name
CADISHI is simply an abbreviation of calculation of distance histograms.

For more information, we refer to our publication:

K. Reuter, J. Koefinger; CADISHI: Fast parallel calculation of particle-pair distance histograms on CPUs and GPUs;
Comp. Phys. Comm. (236), 274 (2019).

A preprint of the paper is available on arXiv.org.

3

https://github.com/bio-phys/cadishi
https://doi.org/10.1016/j.cpc.2018.10.018
https://arxiv.org/abs/1808.01478

CADISHI Documentation, Release 1.1.4

4 Chapter 1. Introduction

CHAPTER 2

Requirements

CADISHI requires a Python 2.7 or Python 3.X installation including the NumPy, SciPy, Cython, h5py, and PyYAML
modules. We recommend to use the Anaconda Python Distribution which provides all the necessary modules out
of the box. CADISHI was mostly developed using Anaconda Python 2 (>=4.0.0). Moreover, to compile the high-
performance kernels, recent GCC (>=4.9) and CUDA (>=7.5, together with a compatible GCC) installations are
required. CADISHI was successfully tested on Linux and Mac machines.

5

CADISHI Documentation, Release 1.1.4

6 Chapter 2. Requirements

CHAPTER 3

Features

CADISHI features a two-level parallelization. On the top level, CADISHI parallelizes over frames (i.e. snapshots of
the ensemble of objects at certain points in time) using the Python multiprocessing module. A single frame is processed
by a single worker process running a CPU or GPU kernel. Multiple worker processes may run simultaneously on a
shared-memory multi-core machine. On the frame level, OpenMP threads are used by the CPU kernel, and CUDA
threads are used by the GPU kernel. Hence, it is possible to fully exploit the resources of a shared-memory machine.
E.g., on a dual-socket server with two GPUs, CADISHI would use two CPU worker processes (one per multi-core
chip) and two GPU worker processes (one per GPU card).

CADISHI supports orthorhombic and triclinic periodic boxes, applying the minimum image convention to the dis-
tances internally.

Computations can be performed in single (default) or double precision. Optionally, the distances can be checked if they
fit into the desired histogram width. Given the combinatorial explosion resulting from these possibilities, templated
C++ code is used to generate machine code with a minimum amount of branches at runtime. Recent compilers are
known to generate well-vectorized machine code from the distance calculation for the CPU. The GPU kernel benefits
strongly from the fast shared-memory atomic operations introduced with the MAXWELL generation of NVIDIA
GPUs.

7

CADISHI Documentation, Release 1.1.4

8 Chapter 3. Features

CHAPTER 4

Input data, distance histogram computation, output data

CADISHI reads input data from an HDF5 file that is specified in the histograms.yaml parameter file. A
typical file location is ./preprocessor_output/trajectory.h5 when CADISHI is used in concert with the
Capriqorn package from the same authors. In any case the HDF5 file must have a certain internal structure as shown
in the following example:

/1/coordinates/species_0
species_1
species_2
...

/2/coordinates/species_0
species_1
species_2
...

...

Frames are numbered starting with 1. The number is used as the label for the uppermost HDF5 group. For each frame
the particle coordinates are stored in the sub-group ‘coordinates’. Coordinate sets are double precision HDF5 datasets
of size (n_i, 3) where n_i is the number of particles of species i. The coordinate datasets use the name of the species
as the label which e.g. can be the name of the chemical element in the context of MD data.

To demonstrate how to feed data into CADISHI there is an example code available at doc/scripts/
input_example.py. Adapt that code to easily implement a reader for arbitrary custom data.

To convert data from a plethora of MD simulation data formats to CADISHI’s HDF5 format, we provide the
script md_to_cadishi.py which is installed together with the main program cadishi. It uses the reader from
the MDAnalysis package which needs to be installed to be able to use the conversion tool (but is not a requirement to
run CADISHI).

For each frame read from the HDF5 file CADISHI computes the distance histograms between the particles for all
combinations of species. The top-level parallelization of CADISHI is able to compute multiple frames simultaneously
on all GPUs and CPUs available on a node. Within a frame, the computation is highly parallelized using threads.

Finally, CADISHI writes the histograms into HDF5 files according to the following scheme:

9

CADISHI Documentation, Release 1.1.4

/1/histograms/species_0,species_0
species_0,species_1
species_0,species_2
species_1,species_1
species_1,species_2
species_2,species_2
...

...

The HDF5 histogram datasets are single-column vectors of 64 bit floats. The numerical datatype was chosen to make
averaging easier and more consistent.

To get an idea about all the options available please have a look at the example parameter file that comes with
CADISHI. It can be generated using the command cadishi example [--expert].

To make life with HDF5 files easier we recommend to use a graphical HDF5 viewer such as HDFView. Note,
however, that HDFView does not support the LZF compression that comes with the Python HDF5 module “H5py”
and is used by CADISHI by default (LZF can be disabled via the parameter file)).

Moreover, to demonstrate how to access the HDF5 data written by CADISHI from Python we provide the example
program doc/scripts/plot_hdf5_data.py. It opens the HDF5 container, reads the last frame and plots a
histogram using matplotlib. As an input file, the CADISHI output from the test case can be taken.

Finally, CADISHI comes with a HDF5 unpack tool (cadishi unpack) and a HDF5 merge tool (cadishi
merge). The latter tool can also be used to decompress single HDF5 files quickly before viewing them with HD-
FView.

10 Chapter 4. Input data, distance histogram computation, output data

CHAPTER 5

Parameters

CADISHI is highly configurable via its YAML parameter file (create a sample file using cadishi example
[--expert]). Below we pick the most important parameters and provide some background explanation.

• histogram:dr: Defines the histogram bin width. The total number of bins is determined in conjunction with
the following parameter.

• histogram:r_max: Defines the histogram cutoff radius. Make sure that your input data is compatible with
the cutoff radius, i.e. the maximum distance between all points must be smaller. In this context, the following
settings are important.

• cpu:check_input and gpu:check_input: Checks at runtime if any distance computed is equal or
smaller than the cutoff radius. If this is not the case, an exception is raised that causes CADISHI to exit. If
these parameters are set to false, no checks are performed and outliers may write into non-allocated memory.
In order to achieve the highest possible performance, make absolutely sure that your data fits into r_max and
disable the checks.

• input:periodic_box: The default value is null, causing CADISHI to automatically look for the presence
of box information in the input data. A box can as well be specified explicitly, or disabled by setting the value
to an empty list [].

To achieve optimum performance, the number of workers and threads must be tuned to your system. For large frames
(>O(100000) particles) it is reasonable to use few workers and a large number of threads per worker, e.g. if you have
a 16 core CPU you could run a single cpu worker process with 14 threads, while keeping the 2 more cores busy with
CADISHI’s reader and writer processes (you always have these two processes). For small frames, use more workers
and fewer (down to one) threads. Running some experiments is useful to gain experience with specific datasets.
Note that CADISHI supports NUMA awareness, i.e. processes can be pinned to CPUs. Calculations on large frames
greatly benefit from the GPU kernels. Enable one worker per GPU. We have seen a binning rate of up to 495 billion
particle-pairs per second on a single Volta GPU.

11

CADISHI Documentation, Release 1.1.4

12 Chapter 5. Parameters

CHAPTER 6

Installation

The package comes with a standard Python setup.py file. It is installed e.g. as follows into the user’s homedirectory:

python setup.py install --user

In this case, setup.py copies the CADISHI files into the directory ~/.local. Make sure that your PATH environment
variable includes the directory ~/.local/bin. To enable a CUDA build the nvcc compiler wrapper must be found
via the PATH environment variable. Influential boolean environment variables are CAD_DEBUG, CAD_OPENMP,
CAD_CUDA, and CAD_SAFE_CUDA_FLAGS; if set they override the keys listed in the options section of the file
setup.cfg.

13

CADISHI Documentation, Release 1.1.4

14 Chapter 6. Installation

CHAPTER 7

Usage

The CADISHI package provides a single main executable cadishi which supports commands and options (similar
to the well-known concept used by git).

To get a quick overview on the options of CADISHI issue the following command:

cadishi --help

To get started a parameter file controlling the distance histogram calculation is required. A basic example is included
with the package and can be created as follows:

cadishi example [--expert]

By default, the parameter file’s name is histograms.yaml. Edit the parameter file to your needs. In particular, the
compute kernels pydh (CPU) and cudh (GPU) can be configured. In the example parameter file, the input configuration
points to the default test case included with the CADISHI package. Adapt the input configuration to your actual data.
An example code on how to import data into CADISHI is available at doc/scripts/input_example.py. As
a second step the distance histogram calculation is run as follows:

cadishi histo

15

CADISHI Documentation, Release 1.1.4

16 Chapter 7. Usage

CHAPTER 8

Source documentation

The documentation linked below is generated automatically from the docstrings present in the CADISHI source code.

8.1 CADISHI modules

The following documentation was automatically generated from the docstrings present in the source code files.

17

CADISHI Documentation, Release 1.1.4

8.1.1 cadishi

8.1.2 cadishi.base

8.1.3 cadishi.io.ascii

8.1.4 cadishi.io.dummy

8.1.5 cadishi.io.hdf5

8.1.6 cadishi.io.pickle

8.1.7 cadishi.dict_util

8.1.8 cadishi.dictfs

8.1.9 cadishi.h5pickle

8.1.10 cadishi.util

8.1.11 cadishi.version

8.2 CADISHI compute kernels

The following documentation was automatically generated from the docstrings present in the source code files.

8.2.1 cadishi.kernel

8.2.2 cadishi.kernel.common

8.2.3 cadishi.kernel.dist

8.2.4 cadishi.kernel.pydh

8.2.5 cadishi.kernel.cudh

8.3 CADISHI executables

The executables are accessible via the cadishi command.

The following documentation was automatically generated from the docstrings present in the source code files.

18 Chapter 8. Source documentation

CADISHI Documentation, Release 1.1.4

8.3.1 cadishi.exe

8.3.2 cadishi.exe.cli

8.3.3 cadishi.exe.histograms

8.3.4 cadishi.exe.unpack

8.3. CADISHI executables 19

CADISHI Documentation, Release 1.1.4

20 Chapter 8. Source documentation

CHAPTER 9

License and Citation

CADISHI is released under the permissive MIT license. See the file LICENSE.txt for details.

Copyright 2015-2019 Klaus Reuter (MPCDF), Juergen Koefinger (MPIBP)

In case you’re using CADISHI for your own academic or non-academic research, we kindly request that you cite
CADISHI in your publications and presentations. We suggest the following citation as appropriate:

K. Reuter, J. Koefinger; CADISHI: Fast parallel calculation of particle-pair distance histograms on CPUs and GPUs;
Comp. Phys. Comm. (236), 274 (2019).

21

https://doi.org/10.1016/j.cpc.2018.10.018

CADISHI Documentation, Release 1.1.4

22 Chapter 9. License and Citation

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

23

	Introduction
	Requirements
	Features
	Input data, distance histogram computation, output data
	Parameters
	Installation
	Usage
	Source documentation
	CADISHI modules
	CADISHI compute kernels
	CADISHI executables

	License and Citation
	Indices and tables

